ISSN 1070-4280, Russian Journal of Organic Chemistry, 2008, Vol. 44, No. 8, pp. 1161–1163. © Pleiades Publishing, Ltd., 2008. Original Russian Text © A.U. Isakhanyan, G.A. Gevorgyan, G.A. Panosyan, 2008, published in Zhurnal Organicheskoi Khimii, 2008, Vol. 44, No. 8, pp. 1175–1177.

Synthesis of 3-(4-Bromophenyl)-1-morpholino-2-phenylalkan-3-ol Hydrochlorides

A. U. Isakhanyan^a, G. A. Gevorgyan^a, and G. A. Panosyan^b

^a Mndzhoyan Institute of Fine Organic Chemistry, National Academy of Sciences of Armenia, pr. Azatutyan 26, Erevan, 375014 Armenia e-mail: gyulgev@gmail.com.

^b Molecular Structure Research Center, National Academy of Sciences of Armenia, Erevan, Armenia

Received July 28, 2007

Abstract—Reactions of 1-(4-bromophenyl)-3-morpholino-2-phenylpropan-1-one with various Grignard compounds in diethyl ether gave a broad series of tertiary amino alcohols, 3-(4-bromophenyl)-1-morpholino-2phenylalkan-3-ol hydrochlorides, that can be regarded as Trihexyphenidyl analogs.

DOI: 10.1134/S1070428008080095

In continuation of our studies on the synthesis of amino ketones and the corresponding tertiary amino alcohols [1–4] we have prepared a series of new 3-(4-bromophenyl)-1-morpholino-2-phenylalkan-3-ol hydrochlorides and examined their antiphlogistic and cholinolytic action. As starting compound we used 1-(4-bromophenyl)-3-morpholino-2-phenylpropan-1one (**II**) which was synthesized by the Mannich reaction of 1-(4-bromophenyl)-2-phenylethanone (**I**) with paraformaldehyde and morpholine in ethanol or dioxane. Ketone **II** reacted with Grignard compounds in anhydrous diethyl ether to produce 3-(4-bromophenyl)-1-morpholino-2-phenylalkan-3-ols **IIIa–IIIk** which were isolated as thick oily substances and converted into the corresponding hydrochlorides **IVa–IVk** (Scheme 1).

The structure of hydrochlorides **IVa–IVk** was confirmed by the ¹H NMR and IR spectra. The IR spectra of initial compounds **I** and **II** contained carbonyl absorption band v(C=O) at 1680 cm⁻¹, whereas amino alcohols **IVa–IVk** showed no absorption assignable to carbonyl groups, but absorption bands at 3400– 3270 cm⁻¹ were present in their IR spectra due to stretching vibrations of the hydroxy group.

 $R = Me (a), Et (b), Pr (c), i-Pr (d), Bu (e), i-Bu (f), iso-C_5H_{11} (g), C_6H_{13} (h), C_7H_{15} (i), Ph (j), cyclo-C_6H_{11} (k).$

The results of biological testing of the newly synthesized compounds will be reported elsewhere.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer from samples dispersed in mineral oil. The ¹H NMR spectra were measured from solutions in DMSO- d_6 on a Varian Mercury-300 instrument using tetramethylsilane as internal reference. The purity of the products was checked by TLC on Silufol UV-254 plates (butan-1-ol–ethanol–acetic acid–water, 8:2:1:3; development with iodine vapor.

1-(4-Bromophenyl)-2-phenylethanone (I) [2] and 1-(4-bromophenyl)-3-morpholino-2-phenylpropan-1one (II) [3] were synthesized according to the procedures described previously.

3-(4-Bromophenyl)-1-morpholino-2-phenylalkan-3-ol hydrochlorides IVa-IVk (general procedure). A solution of 0.01 mol of 1-(4-bromophenyl)-3morpholino-2-phenylpropan-1-one (II) in 30 ml of anhydrous diethyl ether was added dropwise to the Grignard compound prepared from 2.4 g (0.1 mol) of magnesium and 0.11 mol of the corresponding alkyl or aryl halide in 50 ml of anhydrous diethyl ether. The mixture was heated to $40-50^{\circ}$ C and cooled to -5° C, and 10 ml of water was slowly added in a dropwise mode. The organic layer was separated, and the aqueous layer was extracted with diethyl ether $(2 \times 20 \text{ ml})$. The extracts were combined with the organic phase and dried over sodium carbonate, the drying agent was filtered off, and 10 ml of a saturated solution of HCl in diethyl ether was added dropwise until pH 1 (universal indicator paper). The precipitate was filtered off and recrystallized from anhydrous acetone.

3-(4-Bromophenyl)-1-morpholino-2-phenylbutan-3-ol hydrochloride (IVa). Yield 77%, mp 238– 240°C, R_f 0.63. IR spectrum: v 3310 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 1.64 s (3H, CH₃); 2.70 br (1H), 2.92 br (1H), and 3.06 br (2H) (NCH₂); 3.38 br (1H) and 3.65–4.00 m (6H) (OCH₂, CHCH₂); 5.50 br (1H, OH); 6.98 m (2H) and 7.10–7.14 m (3H) (C₆H₅); 7.00–7.24 d (4H, C₆H₄, *J* = 8.7 Hz); 11.67 br (1H, HCl). Found, %: C 56.13; H 5.70; Cl 8.24; N 3.19. C₂₀H₂₄BrNO₂·HCl. Calculated, %: C 56.27; H 5.86; Cl 8.32; N 3.28.

3-(4-Bromophenyl)-1-morpholino-2-phenylpentan-3-ol hydrochloride (IVb). Yield 66%, mp 210– 212°C, R_f 0.62. IR spectrum: v 3290 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.68 t (3H, CH₃, J = 7.2 Hz); 1.97 m (2H, CH₂CH₃); 2.63 m (1H) and 2.92– 3.22 m (3H) (NCH₂); 3.41 m (1H) and 3.69 m (1H, NCH₂); 3.78–4.08 m (5H, OCH₂, CH); 5.20 br (1H, OH); 6.86–7.00 m (4H) and 7.11–7.28 m (5H) (H_{arom}); 11.91 br (1H, HCl). Found, %: C 57.18; H 6.10; Cl 8.03; N 3.16. $C_{21}H_{26}BrNO_2$ ·HCl. Calculated, %: C 57.20; H 6.12; Cl 8.05; N 3.17.

3-(4-Bromophenyl)-1-morpholino-2-phenylhexan-3-ol hydrochloride (IVc). Yield 60%, mp 218– 220°C, R_f 0.63. IR spectrum: v 3270 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.84 m (3H, CH₃); 0.79– 1.40 m (2H, CH₂); 1.79–1.95 m (2H, CH₂); 2.62 br (1H) and 2.83–3.17 m (3H) (NCH₂); 3.40 br (1H) and 3.60–4.10 br (6H, OCH₂, CH); 5.25 br (1H, OH); 6.92 d (2H, C₆H₄, *J* = 8.7 Hz); 6.93 br (2H) and 7.14– 7.18 m (3H) (C₆H₅); 7.26 d (2H, C₆H₄, *J* = 8.7 Hz); 11.91 br (1H, HC1). Found, %: C 58.10; H 6.41; C 17.75; N 3.11. C₂₂H₂₈BrNO₂·HC1. Calculated, %: C 58.08; H 6.38; Cl 7.81; N 3.08.

3-(4-Bromophenyl)-4-methyl-1-morpholino-2phenylpentan-3-ol hydrochloride (IVd). Yield 49%, mp 215–217°C, R_f 0.61. IR spectrum: v 3400 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.58 d (3H, CH₃, J = 6.6 Hz); 1.26 d (3H, CH₃, J = 6.6 Hz); 2.01 sept (1H, CH, J = 6.6 Hz); 2.49 m (1H) and 2.91–3.10 m (3H) (NCH₂); 3.42 m (1H), 3.46 (1H), and 3.77–4.03 m (2H) (OCH₂); 3.67 d (1H, J = 12.5 Hz) and 3.99 m (1H) (NCH₂); 4.20 d.d (1H, CH, J = 7.4, 1.8 Hz); 4.87 br (1H, OH); 6.85–7.32 m (9H, H_{arom}); 12.00 br (1H, HCl). Found, %: C 58.11; H 6.40; Cl 7.78; N 3.10. C₂₂H₂₈ BrNO₂·HCl. Calculated, %: C 58.08; H 6.38; Cl 7.81; N 3.08.

3-(4-Bromophenyl)-1-morpholino-2-phenylheptan-3-ol hydrochloride (IVe). Yield 52%, mp 215– 217°C, R_f 0.64. IR spectrum: v 3380 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.74 m (1H) and 1.24 m (1H, CH₂); 0.82 t (3H, CH₃, J = 7.2 Hz); 1.32 m (2H, CH₂); 1.90 m (2H, CH₂); 2.63 m (1H) and 2.99–3.17 m (3H) (NCH₂); 3.41 m (1H) and 3.69 m (1H) (NCH₂); 3.74–4.07 m (5H, OCH₂, CH); 5.27 br (1H, OH); 6.91 m (2H) and 7.26 m (2H) (C₆H₄); 6.91 m (2H) and 7.16 m (3H) (C₆H₅), 11.95 br (1H, HCl). Found, %: C 58.92; H 6.62; Cl 7.55; N 2.99. C₂₃H₃₀BrNO₂·HCl. Calculated, %: C 58.91; H 6.61; Cl 7.57; N 2.98.

3-(4-Bromophenyl)-5-methyl-1-morpholino-2phenylhexan-3-ol hydrochloride (IVf). Yield 41%, mp 214–216°C, R_f 0.63. IR spectrum: v 3290 cm⁻¹ (OH). Found, %: C 58.90; H 6.60; Cl 7.56; N 2.97. C₂₃H₃₀BrNO₂·HCl. Calculated, %: C 58.91; H 6.61; Cl 7.57; N 2.98. **3-(4-Bromophenyl)-6-methyl-1-morpholino-2phenylheptan-3-ol hydrochloride (IVg).** Yield 70%, mp 202–204°C, R_f 0.63. IR spectrum: v 3280 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.64 m (1H) and 1.29 m (1H) (CH₂); 0.78 d (3H, CH₃, J = 6.6 Hz); 0.85 d (3H, CH₃, J = 6.6 Hz); 1.45 m (1H, CH, J =6.6 Hz); 1.91 m (2H, CH₂); 2.63 m (1H) and 2.97– 3.16 m (3H) (NCH₂); 3.41 m (1H) and 3.70 m (1H) (NCH₂); 3.74–4.07 m (5H, OCH₂, CH); 5.25 br (1H, OH); 6.89 m (2H) and 7.26 m (2H) (C₆H₄); 6.90 m (2H) and 7.16 m (3H) (C₆H₅); 11.90 br (1H, HCl). Found, %: C 59.67; H 6.82; Cl 7.36; N 2.91. C₂₄H₃₂BrNO₂·HCl. Calculated, %: C 59.68; H 6.83; Cl 7.35; N 2.90.

3-(4-Bromophenyl)-1-morpholino-2-phenylnonan-3-ol hydrochloride (IVh). Yield 69%, mp 211– 213°C, R_f 0.62. IR spectrum: v 3390 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.75 m (1H) and 1.37 m (1H) (CH₂); 0.84 t (3H, CH₃, J = 6.9 Hz); 1.13–1.28 m (6H, CH₂); 1.80–1.97 m (2H, CH₂); 2.63 m (1H), 3.00 m (2H), and 3.41 m (1H, NCH₂); 3.11 d.d (1H, J = 3.7, 8.0 Hz) and 3.80 d.d (1H, J = 13.7, 2.9 Hz) (NCH₂); 3.64–4.08 m (5H, OCH₂, CH); 5.25 br (1H, OH); 6.90 m (2H) and 7.26 m (2H) (C₆H₄); 6.91 m (2H) and 7.17 m (3H) (C₆H₅); 11.94 br (1H, HCl). Found, %: C 60.41; H 7.03; C1 7.16; N 2.80. C₂₅H₃₄BrNO₂·HCl. Calculated, %: C 60.42; H 7.04; Cl 7.15; N 2.81.

3-(4-Bromophenyl)-1-morpholino-2-phenyldecan-3-ol hydrochloride (IVi). Yield 72%, mp 205– 207°C, R_f 0.63. IR spectrum: v 3380–3250 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.75 m (1H) and 1.37 m (1H) (CH₂); 0.85 t (3H, CH₃, J = 6.9 Hz); 1.13–1.29 m (8H, CH₂); 1.79–1.96 m (2H, CH₂); 2.62 m (1H), 2.99 m (2H), and 3.39 m (1H) (NCH₂); 3.10 m (1H) and 3.68 m (1H) (NCH₂); 3.62–4.07 m (5H, CH₂, CH); 5.25 br (1H, OH); 6.90 m (2H) and 7.26 m (2H) (C_6H_4) ; 6.91 m (2H) and 7.16 m (3H) (C_6H_5) ; 11.95 br (1H, HCl). Found, %: C 61.13; H 7.32; Cl 6.70; N 2.75. $C_{26}H_{36}BrNO_2 \cdot HCl$. Calculated, %: C 61.12; H 7.30; Cl 6.98; N 2.74.

3-(4-Bromophenyl)-1-morpholino-2,3-diphenylpropan-3-ol hydrochloride (IVj). Yield 73%, mp 220–222°C, R_f 0.60. IR spectrum: v 3330 cm⁻¹ (COH). ¹H NMR spectrum, δ , ppm: 2.55 br (1H) and 2.96 br (3H) (NCH₂); 3.32 br.d (1H, J = 13.5 Hz) and 4.08 br (1H) (NCH₂); 3.51–3.96 br.m (4H, OCH₂); 4.92 br (1H, CH); 5.95 br (1H, OH); 7.01–7.15 m (7H), 7.24–7.3 t (1H), 7.33 m (2H), 7.40 t (2H, J =7.7 Hz), and 7.97 br.d (2H, J = 7.8 Hz) (H_{arom}); 2.90 br (1H, HCl). Found, %: C 61.40; H 5.51; Cl 7.27; N 2.85. C₂₅H₂₆BrNO₂·HCl. Calculated, %: C 61.41; H 5.52; Cl 7.26; N 2.86.

3-(4-Bromophenyl)-3-cyclohexyl-1-morpholino-2-phenylpropan-3-ol hydrochloride (IVk). Yield 59%, mp 198–200°C, R_f 0.62. IR spectrum: v 3380 cm⁻¹ (OH). ¹H NMR spectrum, δ , ppm: 0.91– 1.64 m (10H) and 1.92 m (1H) (C₆H₁₁); 2.36 m (1H) and 2.79–3.09 m (3H) (NCH₂); 3.40 br (2H, NCH₂); 3.80 m (4H, OCH₂); 4.09 m (1H, CH); 5.01 br (1H, OH); 6.91 m (4H), 7.20 m (3H), and 7.27 m (2H) (H_{arom}); 11.86 br (1H, HC1). Found, %: C 60.66; H 6.65; Cl 7.22; N 2.81. C₂₅H₃₂BrNO₂·HCl. Calculated, %: C 60.67; H 6.67; Cl 7.18; N 2.83.

REFERENCES

- Gevorgyan, G.A., Isakhanyan, A.U., Panosyan, G.A., and Tumadzhyan, A.E., *Khim.-Farm. Zh.*, 2003, vol. 37, p. 45.
- Gasparyan, N.K., Gevorgyan, G.A., Isakhanyan, A.U., and Tumadzhyan, A.E., *Khim. Zh. Arm.*, 2003, vol. 56, p. 58.
- 3. Isakhanyan, A.U., Khim. Zh. Arm., 2005, vol. 58, p. 94.
- 4. Gevorgyan, G.A. Khim. Zh. Arm., 2006, vol. 59, p. 137.